首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   2篇
  国内免费   11篇
大气科学   10篇
地球物理   22篇
地质学   63篇
海洋学   5篇
天文学   1篇
综合类   3篇
自然地理   1篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   1篇
  2014年   6篇
  2013年   23篇
  2012年   13篇
  2011年   13篇
  2010年   1篇
  2007年   3篇
  2005年   3篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1974年   2篇
  1973年   3篇
排序方式: 共有105条查询结果,搜索用时 31 毫秒
21.
22.
Nanda Devi Biosphere Reserve(NDBR) was declared as the first Himalayan Biosphere Reserve owing to its unique biological and cultural wealth. Its core zones, Nanda Devi National Park and Valley of Flowers National Park, are a UNESCO World Natural Heritage Site. In spite of lying at a high altitude, interplay of factors such as unique geographical location, climate, topography and wide altitudinal variations have endowed NDBR with a rich and diverse flora. Proportionately high percentage of endemic and near endemic plants makes NDBR a very important protected area from conservation point of view. However, its floristic wealth is facing unprecedented threats in the form of climate change and growing anthropogenic pressure. Hence, a need was felt to assess the directionality, quality and sufficiency of past and ongoing research for the conservation of floral and ethnobotanical wealth of NDBR in the absence of any such previous attempt. Based on an extensive review of more than 150 plant studies on NDBR, this communication provides a detailed account of the current state of knowledge and information gaps on flora, vegetation ecology, rare, endangered, threatened(RET) and endemic plants and ethnobotany. Priority research areas and management measures are discussed for the conservation of its unique floral wealth. Incomplete floral inventorization, lack of biodiversity monitoring, meagre studies on lower plant groups, population status of medicinal plants, habitat assessment of threatened taxa and geo-spatial analysis of alpine vegetation were identified as areas of immediate concern.  相似文献   
23.
Life cycle of glaciers in the Himalayan region has notably changed due to the climatic variability since last few decades. Glaciers across the world and specially the Himalayan glaciers have shown large scale degeneration in the last few decades. Himalayan glaciers serve as an important fresh water resource for the downstream communities, who are dependent on this water for domestic and other purposes. Therefore, glacier shrinkage and the associated hydrological changes pose a significant problem for regional-scale water budgets and resource management. These issues necessitate the regular and rigorous monitoring of the wastage pattern of the Himalayan glaciers in field and using satellite remote sensing data. In this work, we report rapid and enhanced degeneration of the frontal part of the Kangriz glacier, Jammu and Kashmir(J K), in terms of surface melting, debris cover, snout characteristics and meltwater discharge. Ablation data acquired during 2016-2017 shows the average lowering of the frontal part of the glacier to be ~148 ± 34 cm, one-third of which was found to have occurred within a 13 day time period in September, 2017. Also, the quantum of ice melt was found to be inversely influenced(r =-0.84) by the debris thickness. 15 day meltwater discharge measurement revealed its strong relationship with snout disintegration pattern, evidenced twice during the said time period. Volume of water discharged from the glacier was estimated to be 7.91×10~6 m~3 for the measurement duration. Also, mean daily discharge estimated for the 15 days interval showed good positive correction(r = 0.78) with temperature indicating the direct dependency of the former on land surface temperature conditions of the region. Besides the lowering and discharge observations, the frequent ice-block break-offs at the glacier snout further enhance its overall drastic degeneration. The study suggests that, being the largest glacier in the Suru basin, the Kangriz glacier needs to be continuously monitored in order to understand its glacio-hydrological conditions.  相似文献   
24.
Pan-African high-grade metamorphism in the Kerala KhondaliteBelt (South India) led to the in situ formation of garnet-bearingleucosomes (L1) in sodic quartz—alkali feldspar—biotitegneisses. Microtextures, mineralogy and the geochemical characteristicsof in situ leucosomes (L1) and gneiss domains (GnD) indicatethat the development of leucosomes was mainly controlled bythe growth of garnet at the expense of biotite. This is documentedby the selective transfer of FeO, MgO, , Sm and the heavy rareearth elements into the L1 domains. P-T constraints (T>800C,P>6kbar, aH2O0.3) suggest that the leucosomes were formedthrough complete melting of biotite in fluid-absent conditions,following the model reaction Biotite+Alkali feldspar+QuartzlGarnet+Ilmenite+Melt.The fraction of melt generated during this process was low (<10vol.%). The identical size of the leucosomes as well as theirhomogeneous and isotropic distribution at outcrop scale, whichlacks any evidence for melt segregation, suggest that the migmatiteremained a closed system. Subsequent to migmatization, the leptyniticgneisses were intruded by garnet-bearing leucogranitic melts(L2), forming veins parallel and subperpendicular to the foliation.The leucogranites are rich in potassium (K2O5.5 wt%), (Ba400p.p.m.) and Sr (300 p.p.m.), and exhibit low concentrationsof Zr (40 p.p.m.), Th (<1 p.p.m.) and (<10 p.p.m.). Thechondrite-normalized REE spectra show low abundances (LaN20,LuN3) and are moderately fractionated (LaN/LuN7). An Eu anomalyis absent or weakly negative. The higher 87Sr/86Sr ratio at550 Ma (0.7345) compared with the migmatite (0.7164) precludesa direct genetic relationship between leptynitic gneisses andleucogranites at Manali.Nevertheless, the chemical and mineralogicalcompositions of the leuocogranites strongly favour a derivationthrough fluid-absent biotite melting of isotopically distinctbut chemically comparable Manali-type gneisses. The undersaturationof Zr, Th and REE, a typical feature of leucogranitic meltsgenerated during granulite facies anatexis of psammo-peliticlithologies and attributed to disequilibrium melting with incompletedissolution of accessory phases (zircon, monazite), is weaklydeveloped in the leucogranites of Manali.It is concluded thatthis is mainly due to the sluggish migration of the melts instatic conditions, which facilitated equilibration with therestitic gneisses. *Fax: 0228-732763; e-mail: ingo.braun{at}uni-bonn.de  相似文献   
25.
The objective of the present study was to ascertain contamination levels, distribution behaviour and PAHs exposure during summer, winter and autumn during 2011–2012 in one of the developing cities of northern India. Average PAHs concentration was found to be 18.17, 4.04 and 16.38 μg g ?1, whereas, concentration of 16 individual PAHs was found to vary between 0.02 and 200.23, 0.008 and 28.4 μg g ?1, and 0.01 and 252.55 μg g ?1 during summer, winter and autumn seasons, respectively. The average concentration of low and high carcinogenic PAHs during summer, winter and autumn was found to be 5.1 and 31.29, 2.1 and 6.4, 4.74 and 35.08 μg g ?1 at most intercepts. The average ratio of low to high carcinogenic PAHs was found to be 1:6, 1:3, 1:7.6 during summer, winter and autumn, respectively. Five ringed PAHs were found in higher concentration in all seasons. Dib(ah)A and B(a)P were the two individual PAHs found in highest concentration during summer, winter and autumn seasons. Two tailed T-test was applied for authenticity of the results. Toxic equivalency factor of B(a)P and Dib(ah)A was maximum as compared to other PAHs. The study could be of great significance for the planners while considering environmental remedial measures.  相似文献   
26.
Surface measurements of aerosol physical properties were made at Anantapur(14.62°N,77.65 °E,331 m a.s.l),a semiarid rural site in India,during August 2008-July 2009.Measurements included the segregated sizes of aerosolsas as well as total mass concentration and size distributions of aerosols measured at low relative humidity(RH<75%) using a Quartz Crystal Microbalance(QCM) in the 25-0.05 μm aerodynamic diameter range.The hourly average total surface aerosol mass concentration in a day varied from 15 to 70 μg m-3,with a mean value of 34.02±9.05μgm-3 for the entire study period.A clear diurnal pattern appeared in coarse,accumulation and nucleation-mode particle concentrations,with two local maxima occurring in early morning and late evening hours.The concentration of coarse-mode particles was high during the summer season,with a maximum concentration of 11.81±0.98μgm-3 in the month of April,whereas accumulationmode concentration was observed to be high in the winter period contributed >68% to the total aerosol mass concentration.Accumulation aerosol mass fraction,A f(=Ma/Mt) was highest during winter(mean value of Af~0.80) and lowest(Af~0.64) during the monsoon season.The regression analysis shows that both R eff and R m are dependent on coarse-mode aerosols.The relationship between the simultaneous measurements of daily mean aerosol optical depth at 500 nm(AOD500) and PM 2.5 mass concentration([PM2.5]) shows that surface-level aerosol mass concentration increases with the increase in columnar aerosol optical depth over the observation period.  相似文献   
27.
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号